Jump to content

Benvenuto in Dragons´ Lair

La più grande e attiva community italiana sui Giochi di Ruolo.
Accedi o registrati per avere accesso a tutte le funzionalità del sito.
Sarai così in grado di discutere con gli altri utenti della community.

16 Nuovi Talenti

Articolo di Taymoor Rehman, Jeremy Crawford, Ben Petrisor, Dan Dillon e Ari Levitch - 13 Luglio 2020
L'Arcani Rivelati di oggi presenta una selezione di nuovi Talenti per Dungeons & Dragons. Ogni Talento offre un modo per diventare migliori in qualcosa o per ottenere una capacità del tutto nuova. Potete trovare questi talenti nel PDF disponibile più in basso.
Questo è Materiale da Playtest
Il materiale degli Arcani Rivelati è presentato allo scopo di effettuarne il playtesting e di stimolare la vostra immaginazione. Queste meccaniche di gioco sono ancora delle bozze, usabili nelle vostre campagne ma non ancora forgiate tramite playtest e iterazioni ripetute. Non sono ufficialmente parte del gioco. Per queste ragioni, il materiale presentato in questa rubrica non è legale per gli eventi del D&D Adventurers League.
arcani rivelati: 16 nuovi talenti
Link all'articolo originale: https://dnd.wizards.com/articles/unearthed-arcana/feats
Read more...

Fuga dall'Abisso esce il 30 Luglio in italiano

In questi giorni la Asmodee Italia ha aggiornato la pagina del suo sito dedicata alle prossime uscite, rivelando finalmente la data di uscita di Fuga dall'Abisso, un'avventura per PG di livello 1-15 ambientata nel Sottosuolo dei Forgotten Realms e caratterizzata dalla presenza dei mostruosi Signori dei Demoni. Completamente tradotta in lingua italiana, l'avventura uscirà in tutti i negozi il 30 Luglio 2020.
Ovviamente è importante tenere presente che, come specificato sempre dalla Asmodee sul suo sito, le date da lei annunciate sono da considerarsi sempre indicative e potrebbero subire variazioni in caso di contrattempi.
Qui di seguito potrete trovare la descrizione ufficiale dell'Avventura, la copertina del manuale e la recensione da noi pubblicata su DL'.
Grazie a @AVDF per la segnalazione.
Fuga dall'Abisso
L’Underdark è un mondo sotterraneo ricco di meraviglie, un labirinto sterminato e contorto dove regna la paura, popolato da mostri orrendi che non hanno mai visto la luce del giorno. È quaggiù che l’elfo oscuro Gromph Baenre, Arcimago di Menzoberranzan, lancia un empio incantesimo con l’intenzione di infiammare l’energia magica che pervade l’Underdark: nel farlo, spalanca una serie di portali collegati al regno demoniaco dell’Abisso. Ciò che ne esce stupisce lo stesso arcimago, e da quel momento in poi, la follia che aleggia sull’Underdark non fa che crescere e minaccia di scuotere i Reami Dimenticati fin dalle loro fondamenta. Fermate la follia prima che divori anche voi!
Data di uscita: 30 Luglio 2020
Lingua: italiano
Formato: Copertina rigida
Articoli di Dragons' Lair:
❚ Recensione di Fuori dall'Abisso

Read more...

I vecchi manuali di D&D su DMs Guild ora hanno un Disclaimer

Disclaimer: vista l'alta sensibilità del tema trattato in questo articolo (considerato Tema a Rischio, come specificato negli articoli 1.6 e 1.12 del Regolamento di Dragons' Lair), abbiamo deciso di disabilitare i commenti. Si tratta di una soluzione temporanea, che abbiamo deciso di adottare in attesa di poter introdurre una versione più aggiornata del Regolamento. Nei prossimi giorni, infatti, lo Staff di DL' si riunirà per definire nuove linee guida riguardanti proprio la discussione di argomenti simili. Nel frattempo ci scusiamo per il disagio.
 
In linea con un annuncio sul trattamento della Diversità da lei rilasciato qualche settimana fa e in riconoscimento del fatto che, rispetto a 40 anni fa (quando D&D è nato), il mondo è cambiato, la Wizards of the Coast ha deciso di inserire all'interno dei vecchi manuali di Dungeons & Dragons pubblicati sul DMs Guild un Disclaimer riguardante il contenuto in essi trattato. Tale Disclaimer ha lo scopo di avvisare i lettori di oggi che quei manuali sono figli del loro tempo e che, quindi, possono contenere idee, concetti e affermazioni che non rispecchiano i valori del D&D di oggi. Un esempio di manuale in cui è stato inserito il Disclaimer è Oriental Adventures per la 1e.
Qui di seguito potete trovare la traduzione del Disclaimer in italiano:
Ed ecco qui la versione originale:
Fonte: https://www.enworld.org/threads/older-d-d-books-on-dms-guild-now-have-a-disclaimer.673147/
Read more...
By aza

ManaDinamica – Magia ed Entropia

La magia può sembrare una cosa meravigliosa: si tratta di uno strumento in grado di fare, in prima approssimazione, qualunque cosa.
Abbiamo tuttavia già visto nel precedente articolo che la faccenda non è così semplice: infatti, per ottenere un qualunque effetto magico che sia fisicamente coerente, abbiamo bisogno di spendere energia. E abbiamo bisogno di ottenere questa energia da qualche parte.
Ma il problema non si ferma qui: ogni volta che l’energia viene trasformata da una forma all’altra, una porzione di essa sempre maggiore viene dispersa, diventando inutilizzabile per il suo scopo originario
Oggi parliamo del secondo principio della termodinamica… applicato alla magia!

Calore e movimento
Se mettiamo a contatto tra loro due oggetti a diverse temperature, il più caldo comincerà a raffreddarsi e il più freddo a scaldarsi finché non raggiungeranno la stessa temperatura.
Questo fenomeno, detto “principio zero della termodinamica”, è evidente se mettiamo un cubetto di ghiaccio nell’acqua d’estate: il cubetto si scalda, sciogliendosi, ma nel farlo raffredda l’acqua.
Quello che è accaduto è che una certa quantità di energia, detta calore, ha abbandonato il corpo caldo, raffreddandolo, per introdursi in quello più freddo e riscaldarlo.
Questo passaggio di energia può essere “imbrigliato” per ottenere movimento: le macchine in grado di compiere queste trasformazioni sono dette Motori Termici, tra cui il motore a scoppio, il motore stirling e l’immancabile motore a vapore.

Un modellino di motore stirling. Una lieve differenza di temperatura tra il sopra e il sotto della base è sufficiente per far girare la ruota.
Un motore termico ha infatti bisogno di due “ambienti”, uno più caldo dell’altro, e la sua capacità di funzionamento dipende proprio da tale differenza di temperatura.
Quando, nel mondo reale, gli scienziati, ingegneri e inventori del ‘700 e ‘800 cominciarono a studiare il rapporto tra il calore fornito a una macchina a vapore e l’energia meccanica (cioè legata allo spostamento della vaporiera) che essa era in grado di rilasciare, si accorsero che una porzione di tale energia veniva perduta.
Infatti, parte di quel calore andava comunque a riscaldare l’ambiente esterno, più freddo ovviamente della caldaia: questo implica che, se da una parte l’aria esterna circola ed è in grado di rinnovarsi, la caldaia va via via raffreddandosi e richiede sempre nuovo combustibile.
Per quanto si possano migliorare numerose parti di un motore, per esempio riducendo gli attriti (che dissipano ulteriore preziosa energia), una porzione di dispersioni energetiche dovute a questo scambio di calore sarà sempre, inesorabilmente presente.
Tale evidenza portò a una delle formulazioni del “Secondo Principio della Termodinamica”, quella di Lord Kelvin: “È impossibile realizzare una trasformazione ciclica il cui unico risultato sia la trasformazione in lavoro di tutto il calore assorbito da una sorgente omogenea” 
Fu questa triste scoperta, l’inevitabile dispersione dell’energia, che portò gli scienziati del tempo alla definizione di una nuova grandezza fisica: l’Entropia.
Energie inutilizzabili
L’Entropia viene spesso definita come lo “stato di disordine di un sistema”, ma si tratta di una definizione che può confondere: infatti non si tratta banalmente di sistemi nei quali gli elementi siano “riposti ordinatamente”.
Due oggetti a temperature diverse e a contatto tra loro, infatti, sono ugualmente “ordinati” prima o dopo aver scambiato calore tra loro.
Quello che invece sappiamo grazie ai motori termici è che se due oggetti hanno temperature diverse è possibile usarli per generare energia meccanica, mentre questo è impossibile se hanno la stessa temperatura.
In questo secondo caso, infatti, la loro energia è stata “distribuita” tra di essi, mentre inizialmente essa era “disponibile” per generare lavoro.

Se immaginiamo le unità di energia termica come palline, esse possono essere utilizzate per produrre movimento solo finché sono separate
Badate bene che, dopo lo scambio di calore, tale energia non è stata “perduta” nel nulla: l’energia totale è conservata e così il primo principio della termodinamica, solo essa non è più “sfruttabile” alla stessa maniera.
La sua “qualità” è diminuita.
L’Entropia è, di fatto, la misura di questa “riduzione di qualità” dell’energia di un sistema.
Un’evidenza nata sia dall’osservazione naturale che dagli studi di Carnot è che l’entropia è sempre in continua, inesorabile crescita, e quindi la “qualità” dell’energia è in perenne calo.
Ciò ha portato a un’ulteriore formulazione del secondo principio della termodinamica: “in un sistema isolato l’entropia non può mai diminuire”.
Tutti i fenomeni spontanei, infatti, aumentano (o quantomeno mantengono inalterata) l’entropia del sistema: il calore fluisce da un corpo caldo a uno freddo, anche quando si cerca di imbrigliarlo con un motore, riducendo inevitabilmente l’efficacia del processo (come abbiamo già visto).
Tutti i fenomeni naturali che portano alla dispersione dell’energia sono prima o poi inevitabili: il ghiaccio fonde, gli oggetti cadono, il ferro si ossida, le pile si scaricano, le stelle si spengono e gli esseri viventi, alla fine, periscono.
Questo non significa che sia impossibile ottenere effetti opposti a quelli spontanei: abbiamo ad esempio inventato frigoriferi e condizionatori per abbassare la temperatura.
Tuttavia, tali macchinari si “limitano” a spostare il calore, ad esempio, del cibo congelato nell’ambiente fuori dal frigo, e consumano energia per farlo: parte di questa energia poi, ovviamente, non sarà utilizzabile per raffreddare gli alimenti ma verrà dispersa.
Se noi cercassimo di utilizzare la differenza di temperatura tra frigo e stanza per alimentare un motore termico, otterremmo ancora meno energia di quella necessaria per mantenere il cibo congelato.
L’energia necessaria per raffreddare un oggetto è insomma superiore a quella che si otterrebbe utilizzandolo come ambiente freddo per un motore termico: questo perché parte di quell’energia è stata dispersa proprio a causa dell’entropia.
Come per un cambio di valuta, scambiare euro per dollari avrà un costo: riscambiando indietro dollari con euro, un ulteriore costo, ci troveremmo in mano meno soldi di quelli iniziali.

Ogni trasformazione d’energia riduce quella disponibile per nella nuova forma, disperdendone inevitabilmente altra a causa dell’entropia
Inoltre, andando ad effettuare il calcolo, vedremmo che, dove l’entropia dell’interno del frigorifero è diminuita, quella del suo esterno è aumentata di una quantità superiore: l’entropia totale infatti aumenta sempre.
A seguito di un’azione su un sistema che ne riduca l’entropia ci sarà sempre un sistema più grande che lo circondi la cui entropia totale è aumentata (o al limite è rimasta identica): si dice in gergo che “l’entropia dell’universo” non può mai diminuire.
Come per i frigoriferi, anche i meccanismi degli esseri viventi riescono a mantenere sotto controllo l’entropia, a scapito tuttavia delle sostanze che espellono: gli scarti del corpo umano, se anche non fossero per esso dannosi, sarebbero comunque meno nutrienti dell’equivalente cibo necessario per crearli.
Se fossimo in grado di assimilare gli elementi nutritivi del terreno e produrre autonomamente determinate molecole biologiche necessarie per il nostro organismo, come alcune proteine, troveremmo svantaggioso nutrirci di piante e animali poiché il loro “passaggio” ha rubato energia.
Ogni trasformazione di energia ha, infatti, un determinato “rendimento”, cioè una percentuale dell’energia investita che è effettivamente utilizzabile dopo una trasformazione: il rendimento è sempre inferiore al 100% e tale perdita, dovuta all’entropia, va accumulandosi ad ogni passaggio.
Se, per esempio, della benzina viene bruciata per spingere un’automobile, tale processo è più efficiente (si ha cioè a disposizione più energia effettiva) che se tale motore fosse usato per produrre energia elettrica ed essa, a sua volta, utilizzata per alimentare un motore elettrico di un’automobile: motivo per cui le auto elettriche sono efficienti e meno inquinanti solo se ci sono scelte oculate nella produzione dell’energia elettrica.
A loro volta, i combustibili fossili come il petrolio, “fonti” di energia, non sono che l’effetto della degradazione di energie ben superiori accumulate milioni di anni fa durante la crescita, ad esempio, delle piante ormai fossilizzate e dell’azione dei batteri su di esse: l’energia spesa, insomma, per creare un albero e trasformarlo in carbone fossile è superiore a quella ottenuta bruciando quello stesso combustibile.
Per riassumere il concetto, l’entropia è la misura della degradazione dell’energia di un sistema: essa aumenta inesorabilmente a ogni trasformazione d’energia, rendendola sempre più inutilizzabile e portando spontaneamente a fenomeni come la dispersione del calore, dell’energia e la devastazione del tempo.
Gli effetti sulla magia
Ma quali effetti avrebbe l’entropia sulla magia, alla luce anche dell’articolo precedente?
Tanto per cominciare, l’energia magica disponibile sarebbe, se possibile, ancora meno.
Che sia accumulata fuori o dentro il mago, l’energia magica tenderebbe a disperdersi: sarebbe forse questo fenomeno a concedere l’esistenza di incantesimi che permettano la percezione della magia.
Questo implicherebbe, per esempio, che gli effetti magici vadano a svanire nel tempo e causino tutti quei classici eventi come l’indebolimento dei sigilli magici per trattenere chissà quale oscuro demone del passato.
Sarebbe anche molto in linea con tutte quelle ambientazioni nelle quali la magia si è via via ridotta e non sia più facile come un tempo produrre chissà quali effetti meravigliosi, un classico anche di tanti racconti  che pongono spesso le vicende in epoche successive a quelle degli dei e degli eroi: un tale sapore si respira, ad esempio, nelle Cronache del ghiaccio e del fuoco, nel Signore degli Anelli ma anche, da un certo punto di vista, in ambientazioni dove magia e tecnologia si confondono come Warhammer 40.000.

Ma come giustificare la presenza di antichi artefatti di ere perdute in grado di garantire immensi poteri, come quelli tipici della terra di mezzo?
Una maniera per limitare lo scambio di energia al minimo è quello di utilizzare contenitori adiabatici, che riescono quasi ad azzerare lo scambio di calore (chiaramente non è possibile azzerare completamente le perdite per un tempo infinito… proprio per colpa dell’entropia!).
L’idea di ridurre la dispersione dell’energia è ampiamente utilizzata in ambito tecnologico per materiali isolanti (basta pensare all’edilizia o ai termos) nonché per altre applicazioni come i Volani, pesanti oggetti tenuti in rotazione nel vuoto su cuscinetti magnetici in modo che non disperdano il loro movimento rotatorio (il quale viene poi utilizzato, all’occorrenza, per produrre energia).
Impedire a un oggetto magico di rilasciare energia potrebbe essere sia una maniera per allungare la sua vita sia, nell’ottica precedente, di celarne la natura.
Ma un oggetto di potere immenso in grado di durare millenni potrebbe somigliare di più a una forma di vita magica, che ottiene la sua energia dall’ambiente esattamente come le piante (entro un certo limite) dal sole.
In base a come funzioni il mana in un mondo di finzione, oggetti e creature che si nutrono di esso potrebbero ridurne la disponibilità magica in una determinata area, cosa che potrebbe portare a divertenti implicazioni.

Ma l’effetto più importante dell’entropia sulla magia è che la sua energia è ancora più preziosa: ad ogni trasformazione, infatti, viene dissipata, che sia per il passaggio dal metabolismo umano a una riserva magica, dall’ambiente circostante agli incantesimi stessi.
Gli incantesimi poi dovrebbero, se possibile, agire in maniera estremamente diretta: sollevare un masso, per esempio, dovrebbe evitare di richiedere l’apertura di un portale sul piano elementale dell’aria per manifestare una corrente ascensionale (anche se può darsi che un mero sollevamento non sia poi così facile da ottenere… ma ne parleremo oltre!).
Alla stessa maniera, una palla di fuoco potrebbe essere ottenuta separando ossigeno e idrogeno nel vapore acqueo presente nell’aria, spezzando i loro legami tra loro e ottenendo, per ricombinazione, un effetto esplosivo… ma questo richiederebbe un enorme dispendio di energia.
Perfino l’arco elettrico di un fulmine sarebbe molto più semplice da causare, ma richiederebbe comunque più energia di una punta affilata sparata magicamente sul nemico.
Diversa invece la situazione se queste energie magiche fossero presenti e pronte a svilupparsi in maniera selvaggia: in tal caso, il mago potrebbe limitarsi a gestire con perizia il flusso magico incontrollato, lasciando la dispersione energetica più grande alla fonte magica…

Articolo originale: http://www.profmarrelli.it/2020/01/22/manadinamica-magia-ed-entropia/

Se questo articolo ti è piaciuto, segui il prof. Marrelli su facebook e su ludomedia.
Read more...
By aza

ManaDinamica – Conservazione dell’Energia

Uno dei problemi da affrontare, nei giochi e nella fiction in generale, dovuto all’introduzione della magia è integrare tali fenomeni all’interno del mondo per creare un contesto coerente e in qualche modo credibile.
In questa rubrica, dedicata soprattutto agli inventori di mondi (che siano scrittori o dungeon master), cercheremo di analizzare come potrebbe funzionare una magia “fisicamente corretta” ed evitare la classica domanda: “ma perché, se c’è la magia, la gente continua a zappare la terra e morire in modi atroci?”.

IL PROBLEMA ENERGETICO
Se la magia fosse fisicamente corretta, dovrebbe rispettare alcune leggi fra le quali i famosi Principi della Termodinamica (o, per l’occasione, della “Manadinamica”).
Tra questi, il primo è il cosiddetto “Principio di conservazione dell’Energia” che richiede che l’energia totale coinvolta in un fenomeno sia conservata, cioè che la sua quantità totale al termine del processo sia uguale a quella iniziale (contando, in entrambi i casi, tutte le forme di energia presente).
Ma cos’è l’Energia?
L’Energia è una grandezza fisica che descrive vari fenomeni simili capaci di trasformarsi l’uno nell’altro: l’energia elettrica usata per alimentare una stufa si trasforma in energia termica, e quella termica in un motore produce energia meccanica sotto forma di velocità (energia cinetica) e/o sollevando pesanti carichi (energia potenziale).

Ma l’energia è anche la base del funzionamento del nostro corpo: noi otteniamo energia dal cibo che mangiamo (dove è accumulata in forma di energia chimica dei suoi costituenti nutritivi) e usiamo questa energia per muoverci, respirare, pensare e per il corretto funzionamento del nostro metabolismo.
Possiamo dire tranquillamente che la stragrande maggioranza dei fenomeni che conosciamo prevede trasformazioni e scambi di energia, e la magia non può non ricadere in questo sistema: per sollevare un masso con il potere di un incantesimo, l’energia necessaria deve essere ottenuta da qualche parte.
È questo continuo richiamo al “pagamento” di energia che permette di creare un sistema magico fisicamente coerente. Non solo, l’incantesimo deve richiedere tutta l’energia necessaria per ottenere l’effetto desiderato: la generazione di temperature estreme di una palla di fuoco, la crescita di una pianta o lo spostamento di masse ingenti può richiedere una quantità estrema di energia, e talvolta anche difficile da calcolare (soprattutto quando ci sono di mezzo creature viventi o teletrasporti, ma avremo modo di parlarne in altri articoli).
Cerchiamo dunque di rispondere alla domanda: da dove proviene tutta questa energia?
MICROORGANISMI E CONDENSATORI
Una prima possibilità evidente è che l’energia possa essere ottenuta da quella del mago stesso.
Il corpo umano consuma l’energia ottenuta dal cibo per le sue attività, compresa una fetta importante (circa il 60-70%) unicamente per mantenere le funzioni vitali come la respirazione, la circolazione, il pensiero e il mantenimento della temperatura.
Un essere umano, in base all’età, al sesso e all’attività che compie, ha un consumo energetico quotidiano che può andare tra le 1500 e le 2500 kilocalorie circa: la stessa quantità di energia, espressa in Joule (l’unità di misura dell’energia nel sistema internazionale), oscilla tra i 6300 e i 10500 KiloJoule.
Se fosse possibile prendere una piccola frazione, ad esempio l’1% dell’energia di una “persona media” (8000 KJ per comodità), avremmo a disposizione 80 KJ, cioè 80.000 Joule.

Ma “quanti” sono 80.000 Joule?
Sono, ad esempio, pari all’energia necessaria per sollevare di un metro un masso di 8 tonnellate!
L’energia per una simile impresa titanica, ben lontana dalle capacità umane e facilmente assimilabile a un “prodigio magico”, è pari al solo 1% dell’energia consumata da un essere umano “medio”.
Ciò che impedisce a una persona di usare la sua energia in questa maniera è il concetto di “potenza”, cioè l’ammontare di energia che può essere emessa in un determinato ammontare di tempo. I nostri muscoli non sono abbastanza potenti da sollevare massi di una tonnellata (1000 kg) in alto di un metro, ma più che capaci di trasportare un oggetto di 10 kg per un dislivello di 100 metri: queste due azioni richiedono lo stesso ammontare di energia, ma la prima richiede molta più forza e molto meno tempo.

Se riuscissimo a rilasciare energia in tempi inferiori, potremmo letteralmente dare vita alla magia partendo dalla stessa energia dei corpi umani: ma come accumulare questa energia e rilasciarla tutta assieme?
Un mago potrebbe avere una “riserva” di energia magica che viene lentamente ricaricata dal suo stesso metabolismo e che può essere rilasciata rapidamente dando vita a effetti magici, e l’energia mancante del mago potrebbe giustificare la classica carenza di forza fisica che accomuna i maghi in molti giochi di ruolo.
Un’opzione potrebbe essere fare ricorso a sostanze prodotte dall’organismo e accumulate in appositi tessuti, come facciamo già nella realtà con i grassi, in grado di essere “bruciate” per ottenere un picco di energia.
Se invece non volessimo alterare la biologia umana, potremmo immaginarci un microorganismo simbiontico simile ai famosi Midi-Chlorian di Star Wars, in grado di sopravvivere solo in organismi molto specifici (magari in maniera simile a quello che accade con gli antigeni del sangue, solo più complesso).
Infine, il mago potrebbe ottenere energia sottraendola dagli esseri viventi circostanti, in pieno stile “rituali sacrificali” o, più semplicemente, prendendo ispirazione dalla recente serie di The Witcher.

Il rilascio dell’energia dovrebbe essere rapido, con un funzionamento simile a quello del flash delle macchine fotografiche. Le pile, infatti, non sono in grado di fornire una potenza sufficiente per il lampo: il flash, in questo caso, è ottenuto da un Condensatore, un componente dei circuiti in grado di accumulare al suo interno cariche elettriche (cioè, sostanzialmente, elettroni, le particelle che compongono la corrente elettrica) e di scaricarsi molto velocemente.
In questo modo, anche se la velocità di ricarica della pila è ridotta, il condensatore è in grado di fornire rapidamente una grande quantità di energia per il flash: allo stesso modo, un mago dovrebbe essere in grado di bruciare rapidamente la sua riserva energetica per ottenere, in poco tempo, grandi quantità di energia per dare vita ai suoi incantesimi.

Un condensatore. La vostra scheda madre ne è piena.
CATALIZZATORI
Se invece l’energia fosse ottenuta esternamente dal mago, come potrebbe egli averne accesso? E come giustificare una quantità limitata di uso di tale potere?
Sempre pensando a un consumo (almeno iniziale) di energia da parte del mago, si potrebbe ipotizzare un’interazione tra il mago e una sostanza esterna, simile alla Trama nel mondo di Forgotten Realms, grazie al quale il mago ottiene i suoi effetti facendo da catalizzatore.
In chimica, molti processi che trasmettono energia verso l’esterno (esoergodici) non avvengono spontaneamente, ma devono essere “stimolati” tramite una certa quantità di energia iniziale, detta energia di attivazione. Si può immaginare, ad esempio, che una certa reazione rilasci 5 Joule di energia, ma che la sostanza debba prima ricevere due Joule come energia di attivazione per avere inizio.
Un esempio pratico di questi fenomeni sono le combustioni, delle quali parleremo in un futuro articolo: un oggetto che brucia emette energia termica, ma ha prima bisogno di un innesco, un evento in grado di fornirgli l’energia necessaria per far partire la combustione.

Un Catalizzatore è un elemento, di solito una sostanza chimica, in grado di produrre un effetto di Catalisi, cioè di ridurre l’energia di attivazione: nell’esempio precedente la reazione potrebbe, grazie a un catalizzatore, richiedere un solo Joule per avere inizio.
Se il mago fosse in grado di agire da catalizzatore per la magia, questo spiegherebbe come mai solo i maghi sono in grado di usare tale potere, cioè perché l’energia di attivazione è troppo elevata e i non-maghi non sono in grado di abbassarla.
Contemporaneamente, se fosse sempre lui a fornire l’energia iniziale (ridotta grazie alla catalisi) si giustificherebbe anche un utilizzo limitato della magia da parte dell’incantatore.
MASSA ED ENERGIA
Un’ultima, notevole fonte di energia è la cosiddetta annichilazione della materia: la possibilità cioè di trasformare direttamente materia in energia mediante la famosa formula di Einstein.

Si tratta di una quantità di energia enorme: mezzo grammo di materia produrrebbe la stessa energia della bomba di Hiroshima.
Fortunatamente si tratta, nel mondo reale, di un processo assai complesso da ottenere: per avere una annichilazione è necessario far incontrare ogni particella del nostro materiale con la sua antiparticella. Queste ultime sono complesse da ottenere e prodotte solo da reazioni nucleari rare e altresì molto costose, in termini energetici (e non), da ottenere: all’attuale stato delle cose, il più grande apparato in grado di generare tali antiparticelle (il Large Hadron Collider, o LHC, del CERN di Ginevra) sarebbe in grado di ottenere un grammo di antimateria in… qualche milione di anni!
Tuttavia, immaginando di ottenere energia dai due processi precedenti, sarebbe forse possibile annichilire quantità di materia sufficientemente piccole da concedere comunque effetti prodigiosi… se l’antimateria fosse già presente. Infatti, produrre antimateria richiede processi molto più costosi (in termini di energie) di quanto poi riottenuto dall’annichilazione, fino a 10 miliardi di volte tanto.
Anche se, infine, essa fosse già disponibile al mago, questi dovrebbe assicurarsi di mantenere l’antimateria confinata nel vuoto, impedendogli di interagire con qualunque genere di materia, perfino l’aria: tale situazione viene comunemente ottenuta, nel mondo reale, tramite potenti campi elettromagnetici che possono risultare letali alle persone che si avvicinano troppo.

Sarebbe invece possibile ottenere parte dell’energia dagli atomi mediante fusione e fissione: in questo caso, tuttavia, la quantità di energia ottenuta da ogni atomo è molto inferiore e sarebbero necessarie quantità importanti di materiale (e il materiale giusto!), nonché condizioni peculiari di temperatura e pressione altrettanto complesse da ottenere (che richiederebbero ulteriori, drammatiche energie iniziali).
IL PREZZO DA PAGARE
Questa (relativamente) vasta serie di opzione potrebbe far pensare che ottenere energia possa essere semplice, ma si tratta di una conclusione errata.
Il mago dovrebbe indubbiamente pagare il prezzo iniziale consumando parte della sua stessa energia, energia che, se fosse accumulata in una sorta di condensatore magico, non sarebbe disponibile dell’incantatore (al di fuori del suo uso magico) e lo lascerebbe permanentemente spossato.
Se facesse inoltre da catalizzatore per una qualche fonte esterna di energia, essa si andrebbe, nel tempo, a consumare inevitabilmente la fonte di energia magica esterna proprio come i combustibili che diventano inutilizzabili dopo essere bruciati.
Infine, la stessa capacità di annichilire materia richiederebbe una grossa fonte di antimateria oppure energie tali da non giustificarne l’utilizzo, e anche l’energia nucleare si potrebbe sfruttare solo con condizioni estreme di temperatura e pressione.

E’ evidente dunque che l’idea di usare la magia per affrontare problemi altrimenti risolvibili è una mossa assai sconveniente, e che rivolgersi agli incantesimi dovrebbe essere giustificato solo da una necessità particolare e immediata.
E ancora non abbiamo parlato del fatto che non tutta quell’energia può essere utilizzata per lanciare una magia… ma per quello, aspettate il prossimo articolo di Manadinamica!
Articolo originale: http://www.profmarrelli.it/2020/01/15/manadinamica-conservazione-energia/

Se questo articolo ti è piaciuto, segui il prof. Marrelli su facebook e su ludomedia.  
Read more...
aza

Forza vs Velocità in 7 punti – Battle Science

Recommended Posts

Il prof. Marrelli inizia una nuova rubrica su scienza e Giochi di Ruolo.

Benvenuti in questo primo articolo della rubrica Battle Science.

In questa nuova rubrica, andremo ad analizzare la scienza, in particolare la fisica, che si nasconde dietro al combattimento, specialmente gli scontro corpo a corpo del periodo medievale o dei racconti e giochi, anche fantasy, ad esso ispirati.

Affronteremo piano piano la fisica che si nasconde dietro le battaglie, le armi e le armature, cominciando da una domanda che attanaglia da sempre i fan di ogni storia a tema “duelli”.

01.jpg

 

Meglio Forte o Veloce?

Abbiamo tutti in mente la seguente, classica scena: una enorme montagna di muscoli affronta un avversario mingherlino ma agilissimo.

Raramente l’autore, a questo punto, decide di far finire la battaglia con un pesantissimo colpo che manda a terra il combattente agile, anche perché, tra i due, è più probabile che il secondo sia il protagonista: è la rappresentazione per eccellenza della ribellione, del debole contro il forte, Davide contro Golia.
Ma cosa ci dice la scienza? Chi vince? E’ meglio Forte o Veloce?

7 – Cos’è la Forza?

La Forza è una grandezza fisica in grado di fornire accelerazione ai corpi muniti di massa.

Se lasciamo andare un oggetto dalla cima di una scogliera, questo comincia a cadere sempre più velocemente verso il suolo: questo perché il corpo sta subendo una forza, dovuta alla gravità, nota come forza peso alla quale corrisponde l’accelerazione gravitazionale.

02.jpg

Una persona più forte è in grado di fornire una maggiore spinta alle cose (o, come vedremo, anche al proprio corpo), ad esempio sollevando oggetti più pesanti ai quali corrispondono Forze Peso superiori.

6 – Cos’è la Massa?

La massa è una proprietà dei corpi (cioè cose, persone, pianeti, liquidi, gas ecc.) che descrive la materia di cui sono fatti.

Due corpi possono avere la stessa massa anche se molto diversi: un kg di ferro occuperà molto meno spazio di un kg di paglia, ma saranno perfettamente in equilibrio sui piatti di una bilancia adeguata.

La Massa è diversa dal peso in quanto quest’ultimo dipende dal contesto in cui si trova l’oggetto mentre la massa non varia (se non consideriamo la relatività di Einstein).

L’esempio più famoso è il peso di un astronauta sulla luna: se vi pesaste sulla sua superficie non sareste improvvisamente dimagriti, alla faccia di tutti i dietologi, ma semplicemente soggetti a una differente accelerazione di gravità.

03.jpg
Un astronauta sulla terra o sulla luna: stessa massa (Mass), diverso peso (Weight)

5 –Cos’è l’accelerazione?

L’Accelerazione è la variazione di velocità di un corpo in un determinato tempo.

Supponiamo di avere due automobili, una delle quali è un’auto sportiva in grado di raggiungere da ferma i 100km/h in pochi secondi. L’altra invece è una vecchia macchina scassata che richiede diverso tempo per raggiungere la stessa velocità

Una volta arrivate entrambe a 100km/h, le due macchine avranno la stessa velocità, ma la macchina sportiva avrà impiegato molto meno tempo per raggiungerla e avrà dunque subito un’accelerazione maggiore.

04.jpg
Arrivano entrambe a 100km/h. In tempi molto diversi. Con esperienze ESTREMAMENTE diverse.

Ora, lo so cosa state pensando. Pensate che sia colpa del governo, delle banche, delle multinazionali.
Vi sbagliate, è colpa sua!

05.jpg
La prossima volta che fate un conto, ricordate che lo sguardo severo di Sir Isaac Newton veglia su di voi.

Eh già, è colpa di Isaac Newton se ora mi tocca scrivervi una formula!

Forza = massa x accelerazione

Questa formulina facile facile è ottenuta tramite la seconda legge della Dinamica del suddetto Sir. Newton.
Come vi accorgerete nel corso della nostra avventura, la maggior parte delle formule fisiche possono essere scritte in varie maniere in base a quali dati conosciamo e quali dobbiamo trovare.
Questa, ad esempio ci è in realtà più utile scritta in quest’altra forma:

Accelerazione = Forza / Massa

Da questa formula possiamo vedere che:

  • A parità di massa, una Forza superiore fornisce un’accelerazione maggiore. Se Mike Tyson ti da una spinta, vieni lanciato molto più lontano che se te la dà mia nonna.
  • A parità di Forza, oggetti con massa inferiore subiranno un’accelerazione superiore. Se cercate di sollevare un pesante bilanciere o un bicchiere d’acqua, farete molto prima col bicchiere.

4 – Velocità o Accelerazione?

Supponiamo che le due macchine dell’esempio precedente abbiano la stessa massa e che, una volta raggiunta per entrambe la velocità di 100km/h, vi colpiscano in pieno.
Si possono notare due cose fondamentali:

  1. Siete morti
  2. All’impatto, il fatto che la macchina abbia raggiunto la propria velocità in più o meno tempo è ininfluente sul vostro stato di morte.

Il fatto che siate stati colpiti proprio da una macchina e proprio a 100km/h è importante per determinare la vostra fine: infatti se foste stati colpiti da un granello di polvere a 100km/h sareste probabilmente vivi, e alla stessa maniera se aveste toccato una macchina a 0.05km/h sareste stati dolcemente spostati.
Dunque, all’atto pratico, due cose assieme rendono letale l’impatto con un corpo: la sua massa e la sua velocità.

06.jpg
BBBBOOOOM.
Tranquilli, è parte di uno spettacolo e nessuno si fa male davvero.
Tranne le macchine.

3 – Torniamo al duello…

Partiamo dal combattente agile: se avesse una massa inferiore, richiederebbe una forza inferiore per essere spinto. Tuttavia va detto che per sprigionare forza serve massa muscolare: il combattente agile ha tutto l’interesse nell’essere forte, in quanto non deve solo essere veloce, ma deve poter variare rapidamente direzione. Variare la velocità, come abbiamo visto, richiede un’accelerazione e l’accelerazione deriva dalla forza. Essere agile in combattimento, dunque, non richiede solo grosse velocità ma anche grosse accelerazioni.
Inoltre, un combattente meno forte avrà grossi problemi a parare i colpi nemici e, sebbene possa sempre tentare di evitarli, è decisamente più complesso.

Il combattente più grosso probabilmente avrà una massa maggiore: infatti i muscoli pesano più del grasso. Potremmo erroneamente pensare che i colpi del combattente leggero, dovendo muovere meno massa, siano più veloci e quindi più letali: tuttavia abbiamo visto che la massa di un colpo è importante e inoltre i muscoli spingono masse maggiori della loro, quindi sono convenienti nonostante l’aumento di peso.
D’altra parte un combattente muscoloso avrà i suoi vantaggi, ma uno troppo muscoloso non sarà in grado neanche di compiere alcuni movimenti: c’è molta differenza tra il fisico di un rugbista, forte ma al contempo capace di movimenti rapidi, e quello di un bodybuilder estremo.

07.jpg
Orco contro Elfo: la quintessenza dello scontro tra forte e agile

Entrambi i combattenti hanno bisogno di forza: un combattente forte, sprigionando accelerazioni maggiori, fornirà velocità ai suoi colpi in meno tempo e questo significa che, in media, potrà attaccare più rapidamente.
D’altra parte, un colpo ben caricato avrà più tempo a disposizione per accelerare, e sarà dunque, a parità di forza, più veloce all’impatto.
Tra l’altro, non è proprio corretto dire che l’impatto dipenda solo dalla massa e dalla velocità: se questo è vero, infatti, per un proiettile, in uno scontro corpo a corpo la forza del colpo da parte dell’attaccante viene impressa anche durante l’impatto fornendo una certa marcia in più a un lottatore forte.

In tutto ciò però non abbiamo detto quale massa stiamo considerando: ogni buon marzialista sa infatti che un colpo non viene portato solo con il braccio, bensì è la spinta di tutto il corpo, gambe, bacino, torace, spalla e braccio che imprime forza all’attacco. Ancor più che le caratteristiche fisiche stesse, è la tecnica sviluppata e la capacità di usufruire delle leve del proprio corpo che determina l’efficacia di un colpo.

Inoltre, non stiamo mettendo in gioco i riflessi e la capacità di reagire dei due combattenti, oltre a quello che è lo specifico allenamento al combattimento che sviluppa nel guerriero una capacità di leggere le azioni dell’avversario e reagire di conseguenza, la conoscenza propria dei tempi di attacco e difesa e delle distanze ottimali da tenere.

2 – Ma dunque chi vince?

Partiamo dal presupposto che i due esempi mostrano stereotipi distanti dal tipico combattente. Un guerriero che si allena a combattere avrà una forma fisica muscolosa e atletica allo stesso tempo, focalizzandosi sia sulla rapidità, fondamentale per combattere, che sulla forza necessaria per lottare efficacemente.

08.jpg
Leonida. Ti raggiunge a piedi la macchina senza freno a mano. E poi la ferma.

Se prendessimo un omone grasso contro una ragazzina agile, vedremmo che corpi pesanti e poco muscolosi sono indubbiamente svantaggiati, in quanto sprigionano poca forza in relazione alla propria massa. Ma attenzione, anche i corpi con una muscolatura eccessiva, cresciuta in modo non armonico, possono essere meno performanti del previsto: non è detto che un bodybuilder sia un combattente eccellente. D’altro lato, corpi leggeri che si muovono rapidamente hanno una forza più che sufficiente per risultare agili, ma poca massa per portare colpi efficaci contro bersagli più grandi.

C’è da dire, in tutto questo, che non stiamo considerando armi e armature nello scontro che possono variare completamente le sorti del duello. Come vedremo nei prossimi articoli un combattente mingherlino con una spada è molto più pericoloso di uno grosso ma lento, tuttavia questo vantaggio può essere facilmente ridotto dall’armatura dell’avversario.

1 – Una questione di taglia

Se prendiamo due combattenti di taglia differente, uno più alto e pesante dell’altro, con un allenamento simile, in modo da ricevere la stessa accelerazione dalla propria forza, vediamo che quello più grande è avvantaggiato: infatti, se ha massa maggiore ma riceve la stessa accelerazione, avrà una forza maggiore, i suoi colpi saranno più rapidi o quanto meno più pesanti da parare.
Inoltre, un combattente più grande ha in generale delle leve più estese che danno vantaggio nella lotta e delle braccia più lunghe che gli permettono di attaccare avversari più distanti e dunque tenere a bada il nemico più piccolo.

09.jpg
Puoi essere piccolo e atletico. Se incontri uno grande e atletico, sei fregato.

Immaginiamoci dunque un’ultima situazione: se i due combattenti precedenti avessero la stessa forza.
In questo caso, il più grande avrebbe più massa ma il più piccolo sprigionerebbe più accelerazione. Chi porterebbe colpi più letali?

Per rispondere a questa domanda dobbiamo aspettare i prossimi articoli nei quali parleremo impatti, materiali, affondi, fendenti e delle grandezze fisiche ad essi legate.


Articolo originale: http://www.profmarrelli.it/2019/06/18/forza-vs-velocita-in-7-punti-battle-science/

Se questo articolo ti è piaciuto, segui il prof. Marrelli su facebook e su ludomedia.

 


Visualizza articolo completo

  • Like 3

Share this post


Link to post
Share on other sites

Articolo molto interessante, che mi ha fatto tornare in mente come, in "Mutants & Masterminds", la caratteristica alla base del combattimento corpo a corpo non è nè Forza nè Destrezza, ma "Combattimento".

Share this post


Link to post
Share on other sites

Che poi è il punto che @The Stroy ripete da un po’ e a cui la 5e è arrivata vicina ma non del tutto.

Ossia che le “caratteristiche” andrebbero chiamate diversamente e non dovrebbero essere legate all’aspetto psicofisico del personaggio.

Allora avremmo cose come “combattimento”, “magia” o “manualità” a prescindere se il personaggio raggiunga quel punteggio per grazia della sua forza o della sua agilità o ancora per la sua intelligenza o saggezza.

  • Like 2
  • Thanks 1

Share this post


Link to post
Share on other sites
6 ore fa, aza ha scritto:


Tra l’altro, non è proprio corretto dire che l’impatto dipenda solo dalla massa e dalla velocità: se questo è vero, infatti, per un proiettile, in uno scontro corpo a corpo la forza del colpo da parte dell’attaccante viene impressa anche durante l’impatto fornendo una certa marcia in più a un lottatore forte.

 

Questo mi suona molto strano. L'impatto avviene solitamente su una scala temporale per cui risulta trascurabile la forza che può essere impressa da un muscolo in quell'intervallo temporale, soprattutto considerando che la capacità di produrre forza di un muscolo descresce con la velocità (in questo caso siamo alla velocità di picco se tutto va bene).

Share this post


Link to post
Share on other sites
4 ore fa, Ermenegildo2 ha scritto:

Questo mi suona molto strano. L'impatto avviene solitamente su una scala temporale per cui risulta trascurabile la forza che può essere impressa da un muscolo in quell'intervallo temporale, soprattutto considerando che la capacità di produrre forza di un muscolo descresce con la velocità (in questo caso siamo alla velocità di picco se tutto va bene).

Se tiro un pugno il mio peso tiene il mio corpo connesso al terreno. Questo fa sì che io possa esercitare forza con i muscoli dell'intero corpo spingendo dal mio piede alle mie nocche.

Un proiettile di qualsiasi genere invece può contare solo sulla forza iniziale con cui è stato lanciato. Allo stesso modo, se saltassi prima di tirare il pugno eserciterei molta meno forza.

Le arti marziali che usano colpi aerei come il taekwondo infatti usano vari stratagemmi per sopperire a questa mancanza, come rotazioni o attacchi verso il basso che quindi sfruttano la forza di gravità. 

Share this post


Link to post
Share on other sites
9 hours ago, Ermenegildo2 said:

Questo mi suona molto strano. L'impatto avviene solitamente su una scala temporale per cui risulta trascurabile la forza che può essere impressa da un muscolo in quell'intervallo temporale, soprattutto considerando che la capacità di produrre forza di un muscolo descresce con la velocità (in questo caso siamo alla velocità di picco se tutto va bene).

Dipende tantissimo dalla situazione, spada contro spada è completamente diverso da un colpo che entra, e dal tipo di arma e armatura usato.

In molti colpi di scherma storica (soprattutto colpi pensati per la scherma senza armatura, pensati per tagliare la carne) si fanno tagli in cui la pressione si applica in direzione ortogonale quando l'arma è a contatto, e può rimanere a contatto per tempi tali che le accelerazioni non sono assolutamente trascurabili come in un urto ideale. Prova a tagliare un pezzo di pancetta spesso con un coltello da macellaio. Cala la falciata, poi, quando la lama è dentro la carne e la sta aprendo, tira verso di te mentre continui a spingere in basso, permettendo alla lama di tagliare molto più a fondo e con una lacerazione molto più ampia. L'arma cambia addirittura direzione mentre penetra, effetto che ci da l'impressione immediata che l'impulso impresso dal muscolo in quell'intervallo di tempo non è trascurabile.

E l'articolo non considera tutti i casi in cui le spade sono a contatto tra loro, che è la parte dello scontro in cui la forza fisica è drammaticamente importante (insieme alla tecnica, perché chiaramente se riesci ad avere una leva migliore compensi qualsiasi divario di forza fisica).

  • Like 1

Share this post


Link to post
Share on other sites
8 ore fa, Enaluxeme ha scritto:

Se tiro un pugno il mio peso tiene il mio corpo connesso al terreno. Questo fa sì che io possa esercitare forza con i muscoli dell'intero corpo spingendo dal mio piede alle mie nocche.

Un proiettile di qualsiasi genere invece può contare solo sulla forza iniziale con cui è stato lanciato. Allo stesso modo, se saltassi prima di tirare il pugno eserciterei molta meno forza.

Le arti marziali che usano colpi aerei come il taekwondo infatti usano vari stratagemmi per sopperire a questa mancanza, come rotazioni o attacchi verso il basso che quindi sfruttano la forza di gravità. 

Piccola precisazione non è il peso ma l'attrito che ti tiene connesso al terreno, se tu fossi su una una superficie saponata sarebbe un dramma tirare un colpo 😃

3 ore fa, bobon123 ha scritto:

Dipende tantissimo dalla situazione, spada contro spada è completamente diverso da un colpo che entra, e dal tipo di arma e armatura usato.

In molti colpi di scherma storica (soprattutto colpi pensati per la scherma senza armatura, pensati per tagliare la carne) si fanno tagli in cui la pressione si applica in direzione ortogonale quando l'arma è a contatto, e può rimanere a contatto per tempi tali che le accelerazioni non sono assolutamente trascurabili come in un urto ideale. Prova a tagliare un pezzo di pancetta spesso con un coltello da macellaio. Cala la falciata, poi, quando la lama è dentro la carne e la sta aprendo, tira verso di te mentre continui a spingere in basso, permettendo alla lama di tagliare molto più a fondo e con una lacerazione molto più ampia. L'arma cambia addirittura direzione mentre penetra, effetto che ci da l'impressione immediata che l'impulso impresso dal muscolo in quell'intervallo di tempo non è trascurabile.

E l'articolo non considera tutti i casi in cui le spade sono a contatto tra loro, che è la parte dello scontro in cui la forza fisica è drammaticamente importante (insieme alla tecnica, perché chiaramente se riesci ad avere una leva migliore compensi qualsiasi divario di forza fisica).

Ok ai colpi per tagliare non avevo pensato, non rientrano nella mia esperienza diretta. Tuttavia da come descrivi il processo sembra si tratti di un impatto impulsivo seguito da una fase di taglio. In particolare il fatto che debba imprimere una forza tirando verso di me mi fà pensare che l'azione sia in due fasi scollegate da un punto di vista muscolare.

Share this post


Link to post
Share on other sites
1 ora fa, Ermenegildo2 ha scritto:

Piccola precisazione non è il peso ma l'attrito che ti tiene connesso al terreno, se tu fossi su una una superficie saponata sarebbe un dramma tirare un colpo 😃

Si, hai ragione. Il peso aiuta con l'attrito ma non è tutta la storia.

 

1 ora fa, Ermenegildo2 ha scritto:

In particolare il fatto che debba imprimere una forza tirando verso di me mi fà pensare che l'azione sia in due fasi scollegate da un punto di vista muscolare.

Penso l'abbia descritta in questo modo per far capire che con il taglio dritto si può arrivare solo fino a un certo punto, in realtà quando si parla di usare una spada invece che un coltello da macellaio l'obiettivo è quello di unire i due movimenti in uno solo. La pressione aiuta di certo, ma per tagliare bene c'è bisogno di spingere o tirare. Due appunti collegate a questo argomento:

Il braccio (o le braccia) che tiene la tua arma parte sempre dalla tua spalla, quindi anche volendo è molto difficile evitare di tirare in quanto la traiettoria dei colpi non è davvero dritta, ma circolare.

Ci sono addirittura delle tecniche che includono il prendere la spada dalla lama e colpire il bersaglio con manico e guardia. Se provi a prendere un coltello da cucina (quelli col filo dritto, non quelli seghettati) dalla lama e a stringere con tutta la tua forza arriverai al punto di farti restare il segno della pressione, ma se la lama non si muove in avanti o indietro non ti taglierai mai.

Share this post


Link to post
Share on other sites
17 ore fa, Ermenegildo2 ha scritto:

Questo mi suona molto strano. L'impatto avviene solitamente su una scala temporale per cui risulta trascurabile la forza che può essere impressa da un muscolo in quell'intervallo temporale, soprattutto considerando che la capacità di produrre forza di un muscolo descresce con la velocità (in questo caso siamo alla velocità di picco se tutto va bene).

Penso si riferisca al fatto che il colpo dovrebbe accompagnare l'urto (la classica scena del maestro di arti marziali che ti dice di puntare a un punto un po' dietro all'obiettivo) proprio per questa ragione: rimanendo a contatto (aka se io colpisco e tu inizi ad andare indietro, io cerco di seguirti un po') posso sfruttare un po' più tempo la mia massa e aggiungere all'impulso che ti sto trasferendo

[So che sei di formazione scientifica, quindi aggiungo: dato che l'impulso che trasmetto è l'integrale nel tempo di massa per accelerazione, se riesco a mantenere l'accelerazione costante più è lungo il tempo più la massa fa aumentare l'impulso, che poi è quello che fa male]

Devo dire però che il modo in cui è scritta nell'articolo lascia dei dubbi anche a me, e non sono sicurissimo che questa sia l'interpretazione giusta.

Share this post


Link to post
Share on other sites

Credo che quello che @bobon123 volesse dire è che esistono due tipi di "taglio" cui purtroppo la lingua italiana non fa distinzione: cioè, usando la terminologia inglese il Chop, ovvero il raglio secco che si ottiene dalla forza e dall'affilatura del colpo (cioè quello che fa un ascia o una spada molto pesante), e che nelle spade normali generalmente non è particolarmente efficace (soprattutto contro protezioni anche scarse come le imbottiture) ed il Cut, cioè una volta che l'arma è a contatto il muoverla, solitamente ritraendola e facendo il taglio solo in virtù dell'affilatura, cose in cui le spade invece eccellono.

  • Like 2

Share this post


Link to post
Share on other sites

dipende, un conto il danno applicato ad un impatto, che sia una lacerazione, una penetrazione od una botta.

Ma nel momento in cui penetri ed allo scarico del colpo eserciti un movimento e della forza ulteriori per procurare un aumento del danno allora si sta esercitando una forza nel tempo che provoca uno spostamento, quindi in questo caso parleremmo di Lavoro (rimanendo nella terminologia della Fisica).

L'articolo comunque si è concentrato sulla fisica base iniziale ed approfondirà, strumenti e tecniche nei successivi. Sono molto incuriosito.

E sì, concordo che sarebbe bello se D&D magari in 6ed pensasse ad una evoluzione del suo sistema di caratteristiche, affiancando a forza e destrezza, le abilità di combattimento corpo a corpo e balistica (con le magie divine ed arcane che beneficeranno di questo stessi parametri per i proiettili magici o per i colpi/tocchi in corpo a corpo), forza parteciperà al danno aggiuntivo ed alle prove fisiche (scalare, sollevare pesi, ecc.) laddove invece destrezza parteciperà alle abilità fisiche a lei correlate ed alla difesa (il bonus alla CA, altro parametro che spero venga convertito in Difesa). Per non inficiare i combattenti agili e poco muscolosi (a meno che questo tipo di personaggi vengano del tutto dimenticati dall'immaginario collettivo, difficilissimo) la destrezza potrebbe influire sulla capacità di portare un maggior numero di colpi. Così che la somma di più attacchi deboli bilanci quella di meno attacchi ma più forti e dannosi.

Edited by Pyros88

Share this post


Link to post
Share on other sites
Il 20/4/2020 alle 11:08, aza ha scritto:

In tutto ciò però non abbiamo detto quale massa stiamo considerando: ogni buon marzialista sa infatti che un colpo non viene portato solo con il braccio, bensì è la spinta di tutto il corpo, gambe, bacino, torace, spalla e braccio che imprime forza all’attacco. Ancor più che le caratteristiche fisiche stesse, è la tecnica sviluppata e la capacità di usufruire delle leve del proprio corpo che determina l’efficacia di un colpo.

@smite4life Anche io la prima volta che ho  letto il passaggio citato nel mio primo posto pensavo stesse parlando dell'uso di tutto il corpo per infliggere più danni però poi nel testo originale compare questo secondo passaggio che ne parla in maniera esplicita.

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By Vale73
      Ciao a tutte e tutti, 
      dopo una vita passata a giocare giochi di ruolo "tradizionali" (D&D, qualunque edizione, a partire dalla scatola rossa, giocando poi anche all'edizione originale del '74, GURPS, Harp, Merp, Lex Arcana, ecc.), e OSR (Castles & Crusades su tutti!), mi sto avvicinando al mondo dei giochi più "narrativi" e/o "indie" (nello specifico Fate - Core, Accelerato e Condensed - Cypher, Marvel Heroic Roleplaying, Mostri? Niente paura! e anche Savage Worlds) e ibridi (Monsters & Magic: un must!).
      Premessa: mi piacciono moltissimo sia gli approcci tradizionali sia ibridi sia narrativi, quello che sto per dire non è un giudizio di valore sui singoli sistemi.
      Ci sono alcune meccaniche che credo che  "interrompano" l'immedesimazione del giocatore nell'avventura, e che lo riportino, consapevolmente, al fatto che sta giocando ad un gioco, e ad una dimensione di "gestione delle risorse".
      Mi riferisco ai Punti Fato di Fate, ai Bennies di Savage Worlds, ai Dadi Vita di D&D di 5e (o gli impulsi curativi di D&D 4), alle Riserve di Cypher ecc. Queste meccaniche mi sembra che non corrispondano ad alcun elemento nella simulazione, ma sono proprio il segno che si sta giocando tutti insieme a raccontare una storia a cui tutti possono contribuire, sia i giocatori, sia il master. 
      Che ne pensate? 
      Un abbraccio fresco, ogni bene e a presto!
      Mi riferisco ovviamente anche alle Tentazioni del GM di Fate o alle intrusioni del GM o dei Giocatori in Cypher
    • By Mighty Warlock
      Sto lavorando a un progetto universitario sull'editoria, da appassionato ho deciso creare un piccolo rapporto sul mondo dell'OSR. Ritengo che a fronte di questo fenomeno in espansione le informazioni disponibili in rete siano piuttosto frammentarie e incomplete. 
      Ho stilato alcune domande che mi aiuterebbero a completare le informazioni in mio possesso.
      Ringrazio anticipatamente chiunque vorrà rispondere a tutte o a parte delle domande.
       
      Negli ultimi dieci anni circa si è iniziato a parlare di OSR, tra retro-cloni e giochi di pura ispirazione old school si è creata una scena piuttosto variegata. Eppure vengono pubblicati un sacco di cloni, caratterizzati da minime variazioni delle stesse regole. Da un punto di vista editoriale sembra una cosa assurda: è come se, per esempio, scaduti i diritti di un classico della letteratura, prendiamo Dracula di Bram Stocker, chiunque ne facesse una propria edizione home-made con minime modifiche e reinterpretazioni, ma la sostanza non cambia. Secondo te, perché continuano a uscire così tante versioni degli stessi regolamenti, e a ricevere comunque una certa attenzione? Esistono una miriade di autoproduzioni, etichette indie e piccoli editori, quanti titoli o prodotti correlati all'OSR (cartacei o PDF) pensi siano stati prodotti all'incirca? Molti prodotti usciti in questi anni, sia in termini di retro-cloni che progetti di generica ispirazione old-school, adottano una grafica e delle illustrazioni che si richiamano ai moduli degli anni 70 e 80’. Quanto credi che sia un fattore influente in questo genere e perché? Quanto credi che continuerà a svilupparsi la scena OSR, ci siano i presupposti per andare oltre il pubblico di nicchia? Internet ha avuto certamente un ruolo fondamentale nel favorire la nascita e la circolazione di questo materiale. Probabilmente non potremmo godere di questo "rinascimento" senza i finanziamenti via kickstarter, i PDF scaricabili e le comunità di gioco online. Ritieni ci siano anche degli aspetti negativi nel rapporto con la rete? L’interesse per l’OSR non riguarda solo i nostalgici ma ha avvicinato anche le nuove generazioni, qual’è l’età media delle persone con cui giochi?
    • By nolavocals
      Spero che i toni resteranno tranquilli anche perché il mio scopo è solo curiosità nel capire.
      Perchè molti giocatori parlano di role poi alla creazione  le scelte sono meccaniche e nessun pg ha linee definite es. personaggio affetto da talassofobia (esempio concreto per rendere l'idea)
      Capisco tutte le frasi che parlano di libertà ecc, ma visto che ruolare è impersonare un personaggio diverso da se stessi e come un attore dovrebbe seguire delle linee, pur avendo la fortuna di poterselo creare mentre un attore viene pagato per fare anche qualcosa che personalmente non piace.
      Grazie a tutti
       
       
    • By aza
      Dopo averci parlato di Magia e conservazione dell'energia, in questo articolo il prof. Marrelli ci parla di Magie e entropia.
      La magia può sembrare una cosa meravigliosa: si tratta di uno strumento in grado di fare, in prima approssimazione, qualunque cosa.
      Abbiamo tuttavia già visto nel precedente articolo che la faccenda non è così semplice: infatti, per ottenere un qualunque effetto magico che sia fisicamente coerente, abbiamo bisogno di spendere energia. E abbiamo bisogno di ottenere questa energia da qualche parte.
      Ma il problema non si ferma qui: ogni volta che l’energia viene trasformata da una forma all’altra, una porzione di essa sempre maggiore viene dispersa, diventando inutilizzabile per il suo scopo originario
      Oggi parliamo del secondo principio della termodinamica… applicato alla magia!

      Calore e movimento
      Se mettiamo a contatto tra loro due oggetti a diverse temperature, il più caldo comincerà a raffreddarsi e il più freddo a scaldarsi finché non raggiungeranno la stessa temperatura.
      Questo fenomeno, detto “principio zero della termodinamica”, è evidente se mettiamo un cubetto di ghiaccio nell’acqua d’estate: il cubetto si scalda, sciogliendosi, ma nel farlo raffredda l’acqua.
      Quello che è accaduto è che una certa quantità di energia, detta calore, ha abbandonato il corpo caldo, raffreddandolo, per introdursi in quello più freddo e riscaldarlo.
      Questo passaggio di energia può essere “imbrigliato” per ottenere movimento: le macchine in grado di compiere queste trasformazioni sono dette Motori Termici, tra cui il motore a scoppio, il motore stirling e l’immancabile motore a vapore.

      Un modellino di motore stirling. Una lieve differenza di temperatura tra il sopra e il sotto della base è sufficiente per far girare la ruota.
      Un motore termico ha infatti bisogno di due “ambienti”, uno più caldo dell’altro, e la sua capacità di funzionamento dipende proprio da tale differenza di temperatura.
      Quando, nel mondo reale, gli scienziati, ingegneri e inventori del ‘700 e ‘800 cominciarono a studiare il rapporto tra il calore fornito a una macchina a vapore e l’energia meccanica (cioè legata allo spostamento della vaporiera) che essa era in grado di rilasciare, si accorsero che una porzione di tale energia veniva perduta.
      Infatti, parte di quel calore andava comunque a riscaldare l’ambiente esterno, più freddo ovviamente della caldaia: questo implica che, se da una parte l’aria esterna circola ed è in grado di rinnovarsi, la caldaia va via via raffreddandosi e richiede sempre nuovo combustibile.
      Per quanto si possano migliorare numerose parti di un motore, per esempio riducendo gli attriti (che dissipano ulteriore preziosa energia), una porzione di dispersioni energetiche dovute a questo scambio di calore sarà sempre, inesorabilmente presente.
      Tale evidenza portò a una delle formulazioni del “Secondo Principio della Termodinamica”, quella di Lord Kelvin: “È impossibile realizzare una trasformazione ciclica il cui unico risultato sia la trasformazione in lavoro di tutto il calore assorbito da una sorgente omogenea” 
      Fu questa triste scoperta, l’inevitabile dispersione dell’energia, che portò gli scienziati del tempo alla definizione di una nuova grandezza fisica: l’Entropia.
      Energie inutilizzabili
      L’Entropia viene spesso definita come lo “stato di disordine di un sistema”, ma si tratta di una definizione che può confondere: infatti non si tratta banalmente di sistemi nei quali gli elementi siano “riposti ordinatamente”.
      Due oggetti a temperature diverse e a contatto tra loro, infatti, sono ugualmente “ordinati” prima o dopo aver scambiato calore tra loro.
      Quello che invece sappiamo grazie ai motori termici è che se due oggetti hanno temperature diverse è possibile usarli per generare energia meccanica, mentre questo è impossibile se hanno la stessa temperatura.
      In questo secondo caso, infatti, la loro energia è stata “distribuita” tra di essi, mentre inizialmente essa era “disponibile” per generare lavoro.

      Se immaginiamo le unità di energia termica come palline, esse possono essere utilizzate per produrre movimento solo finché sono separate
      Badate bene che, dopo lo scambio di calore, tale energia non è stata “perduta” nel nulla: l’energia totale è conservata e così il primo principio della termodinamica, solo essa non è più “sfruttabile” alla stessa maniera.
      La sua “qualità” è diminuita.
      L’Entropia è, di fatto, la misura di questa “riduzione di qualità” dell’energia di un sistema.
      Un’evidenza nata sia dall’osservazione naturale che dagli studi di Carnot è che l’entropia è sempre in continua, inesorabile crescita, e quindi la “qualità” dell’energia è in perenne calo.
      Ciò ha portato a un’ulteriore formulazione del secondo principio della termodinamica: “in un sistema isolato l’entropia non può mai diminuire”.
      Tutti i fenomeni spontanei, infatti, aumentano (o quantomeno mantengono inalterata) l’entropia del sistema: il calore fluisce da un corpo caldo a uno freddo, anche quando si cerca di imbrigliarlo con un motore, riducendo inevitabilmente l’efficacia del processo (come abbiamo già visto).
      Tutti i fenomeni naturali che portano alla dispersione dell’energia sono prima o poi inevitabili: il ghiaccio fonde, gli oggetti cadono, il ferro si ossida, le pile si scaricano, le stelle si spengono e gli esseri viventi, alla fine, periscono.
      Questo non significa che sia impossibile ottenere effetti opposti a quelli spontanei: abbiamo ad esempio inventato frigoriferi e condizionatori per abbassare la temperatura.
      Tuttavia, tali macchinari si “limitano” a spostare il calore, ad esempio, del cibo congelato nell’ambiente fuori dal frigo, e consumano energia per farlo: parte di questa energia poi, ovviamente, non sarà utilizzabile per raffreddare gli alimenti ma verrà dispersa.
      Se noi cercassimo di utilizzare la differenza di temperatura tra frigo e stanza per alimentare un motore termico, otterremmo ancora meno energia di quella necessaria per mantenere il cibo congelato.
      L’energia necessaria per raffreddare un oggetto è insomma superiore a quella che si otterrebbe utilizzandolo come ambiente freddo per un motore termico: questo perché parte di quell’energia è stata dispersa proprio a causa dell’entropia.
      Come per un cambio di valuta, scambiare euro per dollari avrà un costo: riscambiando indietro dollari con euro, un ulteriore costo, ci troveremmo in mano meno soldi di quelli iniziali.

      Ogni trasformazione d’energia riduce quella disponibile per nella nuova forma, disperdendone inevitabilmente altra a causa dell’entropia
      Inoltre, andando ad effettuare il calcolo, vedremmo che, dove l’entropia dell’interno del frigorifero è diminuita, quella del suo esterno è aumentata di una quantità superiore: l’entropia totale infatti aumenta sempre.
      A seguito di un’azione su un sistema che ne riduca l’entropia ci sarà sempre un sistema più grande che lo circondi la cui entropia totale è aumentata (o al limite è rimasta identica): si dice in gergo che “l’entropia dell’universo” non può mai diminuire.
      Come per i frigoriferi, anche i meccanismi degli esseri viventi riescono a mantenere sotto controllo l’entropia, a scapito tuttavia delle sostanze che espellono: gli scarti del corpo umano, se anche non fossero per esso dannosi, sarebbero comunque meno nutrienti dell’equivalente cibo necessario per crearli.
      Se fossimo in grado di assimilare gli elementi nutritivi del terreno e produrre autonomamente determinate molecole biologiche necessarie per il nostro organismo, come alcune proteine, troveremmo svantaggioso nutrirci di piante e animali poiché il loro “passaggio” ha rubato energia.
      Ogni trasformazione di energia ha, infatti, un determinato “rendimento”, cioè una percentuale dell’energia investita che è effettivamente utilizzabile dopo una trasformazione: il rendimento è sempre inferiore al 100% e tale perdita, dovuta all’entropia, va accumulandosi ad ogni passaggio.
      Se, per esempio, della benzina viene bruciata per spingere un’automobile, tale processo è più efficiente (si ha cioè a disposizione più energia effettiva) che se tale motore fosse usato per produrre energia elettrica ed essa, a sua volta, utilizzata per alimentare un motore elettrico di un’automobile: motivo per cui le auto elettriche sono efficienti e meno inquinanti solo se ci sono scelte oculate nella produzione dell’energia elettrica.
      A loro volta, i combustibili fossili come il petrolio, “fonti” di energia, non sono che l’effetto della degradazione di energie ben superiori accumulate milioni di anni fa durante la crescita, ad esempio, delle piante ormai fossilizzate e dell’azione dei batteri su di esse: l’energia spesa, insomma, per creare un albero e trasformarlo in carbone fossile è superiore a quella ottenuta bruciando quello stesso combustibile.
      Per riassumere il concetto, l’entropia è la misura della degradazione dell’energia di un sistema: essa aumenta inesorabilmente a ogni trasformazione d’energia, rendendola sempre più inutilizzabile e portando spontaneamente a fenomeni come la dispersione del calore, dell’energia e la devastazione del tempo.
      Gli effetti sulla magia
      Ma quali effetti avrebbe l’entropia sulla magia, alla luce anche dell’articolo precedente?
      Tanto per cominciare, l’energia magica disponibile sarebbe, se possibile, ancora meno.
      Che sia accumulata fuori o dentro il mago, l’energia magica tenderebbe a disperdersi: sarebbe forse questo fenomeno a concedere l’esistenza di incantesimi che permettano la percezione della magia.
      Questo implicherebbe, per esempio, che gli effetti magici vadano a svanire nel tempo e causino tutti quei classici eventi come l’indebolimento dei sigilli magici per trattenere chissà quale oscuro demone del passato.
      Sarebbe anche molto in linea con tutte quelle ambientazioni nelle quali la magia si è via via ridotta e non sia più facile come un tempo produrre chissà quali effetti meravigliosi, un classico anche di tanti racconti  che pongono spesso le vicende in epoche successive a quelle degli dei e degli eroi: un tale sapore si respira, ad esempio, nelle Cronache del ghiaccio e del fuoco, nel Signore degli Anelli ma anche, da un certo punto di vista, in ambientazioni dove magia e tecnologia si confondono come Warhammer 40.000.

      Ma come giustificare la presenza di antichi artefatti di ere perdute in grado di garantire immensi poteri, come quelli tipici della terra di mezzo?
      Una maniera per limitare lo scambio di energia al minimo è quello di utilizzare contenitori adiabatici, che riescono quasi ad azzerare lo scambio di calore (chiaramente non è possibile azzerare completamente le perdite per un tempo infinito… proprio per colpa dell’entropia!).
      L’idea di ridurre la dispersione dell’energia è ampiamente utilizzata in ambito tecnologico per materiali isolanti (basta pensare all’edilizia o ai termos) nonché per altre applicazioni come i Volani, pesanti oggetti tenuti in rotazione nel vuoto su cuscinetti magnetici in modo che non disperdano il loro movimento rotatorio (il quale viene poi utilizzato, all’occorrenza, per produrre energia).
      Impedire a un oggetto magico di rilasciare energia potrebbe essere sia una maniera per allungare la sua vita sia, nell’ottica precedente, di celarne la natura.
      Ma un oggetto di potere immenso in grado di durare millenni potrebbe somigliare di più a una forma di vita magica, che ottiene la sua energia dall’ambiente esattamente come le piante (entro un certo limite) dal sole.
      In base a come funzioni il mana in un mondo di finzione, oggetti e creature che si nutrono di esso potrebbero ridurne la disponibilità magica in una determinata area, cosa che potrebbe portare a divertenti implicazioni.

      Ma l’effetto più importante dell’entropia sulla magia è che la sua energia è ancora più preziosa: ad ogni trasformazione, infatti, viene dissipata, che sia per il passaggio dal metabolismo umano a una riserva magica, dall’ambiente circostante agli incantesimi stessi.
      Gli incantesimi poi dovrebbero, se possibile, agire in maniera estremamente diretta: sollevare un masso, per esempio, dovrebbe evitare di richiedere l’apertura di un portale sul piano elementale dell’aria per manifestare una corrente ascensionale (anche se può darsi che un mero sollevamento non sia poi così facile da ottenere… ma ne parleremo oltre!).
      Alla stessa maniera, una palla di fuoco potrebbe essere ottenuta separando ossigeno e idrogeno nel vapore acqueo presente nell’aria, spezzando i loro legami tra loro e ottenendo, per ricombinazione, un effetto esplosivo… ma questo richiederebbe un enorme dispendio di energia.
      Perfino l’arco elettrico di un fulmine sarebbe molto più semplice da causare, ma richiederebbe comunque più energia di una punta affilata sparata magicamente sul nemico.
      Diversa invece la situazione se queste energie magiche fossero presenti e pronte a svilupparsi in maniera selvaggia: in tal caso, il mago potrebbe limitarsi a gestire con perizia il flusso magico incontrollato, lasciando la dispersione energetica più grande alla fonte magica…

      Articolo originale: http://www.profmarrelli.it/2020/01/22/manadinamica-magia-ed-entropia/

      Se questo articolo ti è piaciuto, segui il prof. Marrelli su facebook e su ludomedia.
      Visualizza articolo completo
    • By aza
      Il prof. Marrelli ci parla di come potrebbe funzionare una magia “fisicamente corretta” nei monidi Fantasy.
       
      Uno dei problemi da affrontare, nei giochi e nella fiction in generale, dovuto all’introduzione della magia è integrare tali fenomeni all’interno del mondo per creare un contesto coerente e in qualche modo credibile.
      In questa rubrica, dedicata soprattutto agli inventori di mondi (che siano scrittori o dungeon master), cercheremo di analizzare come potrebbe funzionare una magia “fisicamente corretta” ed evitare la classica domanda: “ma perché, se c’è la magia, la gente continua a zappare la terra e morire in modi atroci?”.

      IL PROBLEMA ENERGETICO
      Se la magia fosse fisicamente corretta, dovrebbe rispettare alcune leggi fra le quali i famosi Principi della Termodinamica (o, per l’occasione, della “Manadinamica”).
      Tra questi, il primo è il cosiddetto “Principio di conservazione dell’Energia” che richiede che l’energia totale coinvolta in un fenomeno sia conservata, cioè che la sua quantità totale al termine del processo sia uguale a quella iniziale (contando, in entrambi i casi, tutte le forme di energia presente).
      Ma cos’è l’Energia?
      L’Energia è una grandezza fisica che descrive vari fenomeni simili capaci di trasformarsi l’uno nell’altro: l’energia elettrica usata per alimentare una stufa si trasforma in energia termica, e quella termica in un motore produce energia meccanica sotto forma di velocità (energia cinetica) e/o sollevando pesanti carichi (energia potenziale).

      Ma l’energia è anche la base del funzionamento del nostro corpo: noi otteniamo energia dal cibo che mangiamo (dove è accumulata in forma di energia chimica dei suoi costituenti nutritivi) e usiamo questa energia per muoverci, respirare, pensare e per il corretto funzionamento del nostro metabolismo.
      Possiamo dire tranquillamente che la stragrande maggioranza dei fenomeni che conosciamo prevede trasformazioni e scambi di energia, e la magia non può non ricadere in questo sistema: per sollevare un masso con il potere di un incantesimo, l’energia necessaria deve essere ottenuta da qualche parte.
      È questo continuo richiamo al “pagamento” di energia che permette di creare un sistema magico fisicamente coerente. Non solo, l’incantesimo deve richiedere tutta l’energia necessaria per ottenere l’effetto desiderato: la generazione di temperature estreme di una palla di fuoco, la crescita di una pianta o lo spostamento di masse ingenti può richiedere una quantità estrema di energia, e talvolta anche difficile da calcolare (soprattutto quando ci sono di mezzo creature viventi o teletrasporti, ma avremo modo di parlarne in altri articoli).
      Cerchiamo dunque di rispondere alla domanda: da dove proviene tutta questa energia?
      MICROORGANISMI E CONDENSATORI
      Una prima possibilità evidente è che l’energia possa essere ottenuta da quella del mago stesso.
      Il corpo umano consuma l’energia ottenuta dal cibo per le sue attività, compresa una fetta importante (circa il 60-70%) unicamente per mantenere le funzioni vitali come la respirazione, la circolazione, il pensiero e il mantenimento della temperatura.
      Un essere umano, in base all’età, al sesso e all’attività che compie, ha un consumo energetico quotidiano che può andare tra le 1500 e le 2500 kilocalorie circa: la stessa quantità di energia, espressa in Joule (l’unità di misura dell’energia nel sistema internazionale), oscilla tra i 6300 e i 10500 KiloJoule.
      Se fosse possibile prendere una piccola frazione, ad esempio l’1% dell’energia di una “persona media” (8000 KJ per comodità), avremmo a disposizione 80 KJ, cioè 80.000 Joule.

      Ma “quanti” sono 80.000 Joule?
      Sono, ad esempio, pari all’energia necessaria per sollevare di un metro un masso di 8 tonnellate!
      L’energia per una simile impresa titanica, ben lontana dalle capacità umane e facilmente assimilabile a un “prodigio magico”, è pari al solo 1% dell’energia consumata da un essere umano “medio”.
      Ciò che impedisce a una persona di usare la sua energia in questa maniera è il concetto di “potenza”, cioè l’ammontare di energia che può essere emessa in un determinato ammontare di tempo. I nostri muscoli non sono abbastanza potenti da sollevare massi di una tonnellata (1000 kg) in alto di un metro, ma più che capaci di trasportare un oggetto di 10 kg per un dislivello di 100 metri: queste due azioni richiedono lo stesso ammontare di energia, ma la prima richiede molta più forza e molto meno tempo.

      Se riuscissimo a rilasciare energia in tempi inferiori, potremmo letteralmente dare vita alla magia partendo dalla stessa energia dei corpi umani: ma come accumulare questa energia e rilasciarla tutta assieme?
      Un mago potrebbe avere una “riserva” di energia magica che viene lentamente ricaricata dal suo stesso metabolismo e che può essere rilasciata rapidamente dando vita a effetti magici, e l’energia mancante del mago potrebbe giustificare la classica carenza di forza fisica che accomuna i maghi in molti giochi di ruolo.
      Un’opzione potrebbe essere fare ricorso a sostanze prodotte dall’organismo e accumulate in appositi tessuti, come facciamo già nella realtà con i grassi, in grado di essere “bruciate” per ottenere un picco di energia.
      Se invece non volessimo alterare la biologia umana, potremmo immaginarci un microorganismo simbiontico simile ai famosi Midi-Chlorian di Star Wars, in grado di sopravvivere solo in organismi molto specifici (magari in maniera simile a quello che accade con gli antigeni del sangue, solo più complesso).
      Infine, il mago potrebbe ottenere energia sottraendola dagli esseri viventi circostanti, in pieno stile “rituali sacrificali” o, più semplicemente, prendendo ispirazione dalla recente serie di The Witcher.

      Il rilascio dell’energia dovrebbe essere rapido, con un funzionamento simile a quello del flash delle macchine fotografiche. Le pile, infatti, non sono in grado di fornire una potenza sufficiente per il lampo: il flash, in questo caso, è ottenuto da un Condensatore, un componente dei circuiti in grado di accumulare al suo interno cariche elettriche (cioè, sostanzialmente, elettroni, le particelle che compongono la corrente elettrica) e di scaricarsi molto velocemente.
      In questo modo, anche se la velocità di ricarica della pila è ridotta, il condensatore è in grado di fornire rapidamente una grande quantità di energia per il flash: allo stesso modo, un mago dovrebbe essere in grado di bruciare rapidamente la sua riserva energetica per ottenere, in poco tempo, grandi quantità di energia per dare vita ai suoi incantesimi.

      Un condensatore. La vostra scheda madre ne è piena.
      CATALIZZATORI
      Se invece l’energia fosse ottenuta esternamente dal mago, come potrebbe egli averne accesso? E come giustificare una quantità limitata di uso di tale potere?
      Sempre pensando a un consumo (almeno iniziale) di energia da parte del mago, si potrebbe ipotizzare un’interazione tra il mago e una sostanza esterna, simile alla Trama nel mondo di Forgotten Realms, grazie al quale il mago ottiene i suoi effetti facendo da catalizzatore.
      In chimica, molti processi che trasmettono energia verso l’esterno (esoergodici) non avvengono spontaneamente, ma devono essere “stimolati” tramite una certa quantità di energia iniziale, detta energia di attivazione. Si può immaginare, ad esempio, che una certa reazione rilasci 5 Joule di energia, ma che la sostanza debba prima ricevere due Joule come energia di attivazione per avere inizio.
      Un esempio pratico di questi fenomeni sono le combustioni, delle quali parleremo in un futuro articolo: un oggetto che brucia emette energia termica, ma ha prima bisogno di un innesco, un evento in grado di fornirgli l’energia necessaria per far partire la combustione.

      Un Catalizzatore è un elemento, di solito una sostanza chimica, in grado di produrre un effetto di Catalisi, cioè di ridurre l’energia di attivazione: nell’esempio precedente la reazione potrebbe, grazie a un catalizzatore, richiedere un solo Joule per avere inizio.
      Se il mago fosse in grado di agire da catalizzatore per la magia, questo spiegherebbe come mai solo i maghi sono in grado di usare tale potere, cioè perché l’energia di attivazione è troppo elevata e i non-maghi non sono in grado di abbassarla.
      Contemporaneamente, se fosse sempre lui a fornire l’energia iniziale (ridotta grazie alla catalisi) si giustificherebbe anche un utilizzo limitato della magia da parte dell’incantatore.
      MASSA ED ENERGIA
      Un’ultima, notevole fonte di energia è la cosiddetta annichilazione della materia: la possibilità cioè di trasformare direttamente materia in energia mediante la famosa formula di Einstein.

      Si tratta di una quantità di energia enorme: mezzo grammo di materia produrrebbe la stessa energia della bomba di Hiroshima.
      Fortunatamente si tratta, nel mondo reale, di un processo assai complesso da ottenere: per avere una annichilazione è necessario far incontrare ogni particella del nostro materiale con la sua antiparticella. Queste ultime sono complesse da ottenere e prodotte solo da reazioni nucleari rare e altresì molto costose, in termini energetici (e non), da ottenere: all’attuale stato delle cose, il più grande apparato in grado di generare tali antiparticelle (il Large Hadron Collider, o LHC, del CERN di Ginevra) sarebbe in grado di ottenere un grammo di antimateria in… qualche milione di anni!
      Tuttavia, immaginando di ottenere energia dai due processi precedenti, sarebbe forse possibile annichilire quantità di materia sufficientemente piccole da concedere comunque effetti prodigiosi… se l’antimateria fosse già presente. Infatti, produrre antimateria richiede processi molto più costosi (in termini di energie) di quanto poi riottenuto dall’annichilazione, fino a 10 miliardi di volte tanto.
      Anche se, infine, essa fosse già disponibile al mago, questi dovrebbe assicurarsi di mantenere l’antimateria confinata nel vuoto, impedendogli di interagire con qualunque genere di materia, perfino l’aria: tale situazione viene comunemente ottenuta, nel mondo reale, tramite potenti campi elettromagnetici che possono risultare letali alle persone che si avvicinano troppo.

      Sarebbe invece possibile ottenere parte dell’energia dagli atomi mediante fusione e fissione: in questo caso, tuttavia, la quantità di energia ottenuta da ogni atomo è molto inferiore e sarebbero necessarie quantità importanti di materiale (e il materiale giusto!), nonché condizioni peculiari di temperatura e pressione altrettanto complesse da ottenere (che richiederebbero ulteriori, drammatiche energie iniziali).
      IL PREZZO DA PAGARE
      Questa (relativamente) vasta serie di opzione potrebbe far pensare che ottenere energia possa essere semplice, ma si tratta di una conclusione errata.
      Il mago dovrebbe indubbiamente pagare il prezzo iniziale consumando parte della sua stessa energia, energia che, se fosse accumulata in una sorta di condensatore magico, non sarebbe disponibile dell’incantatore (al di fuori del suo uso magico) e lo lascerebbe permanentemente spossato.
      Se facesse inoltre da catalizzatore per una qualche fonte esterna di energia, essa si andrebbe, nel tempo, a consumare inevitabilmente la fonte di energia magica esterna proprio come i combustibili che diventano inutilizzabili dopo essere bruciati.
      Infine, la stessa capacità di annichilire materia richiederebbe una grossa fonte di antimateria oppure energie tali da non giustificarne l’utilizzo, e anche l’energia nucleare si potrebbe sfruttare solo con condizioni estreme di temperatura e pressione.

      E’ evidente dunque che l’idea di usare la magia per affrontare problemi altrimenti risolvibili è una mossa assai sconveniente, e che rivolgersi agli incantesimi dovrebbe essere giustificato solo da una necessità particolare e immediata.
      E ancora non abbiamo parlato del fatto che non tutta quell’energia può essere utilizzata per lanciare una magia… ma per quello, aspettate il prossimo articolo di Manadinamica!
      Articolo originale: http://www.profmarrelli.it/2020/01/15/manadinamica-conservazione-energia/

      Se questo articolo ti è piaciuto, segui il prof. Marrelli su facebook e su ludomedia.  

      View full article
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.